Standard Template Library

STL

° What are templates and STL and how to use them?

°* Some common data-structures

* Comparator functions

° Some more datastructures

* Iterators

* Algorithms (sort, find, reverse, ...)

* Other templated types (pair, complex, string and rope)

* Efficiencies of the common Data-Structures
° How to use the STL docs *

In the beginning..

* Say I want to create a queue of integers

* Good fine, after a bit of work this can be done
* Now I want a queue of strings...

* ok... remake the queue but with strings this time
* Wait? Haven't I just done 2 times the work?

* Yes... yes I have

°* Wouldn't it be nice i1f you could just do 1t once...

* Yes... yes it would :)

Introducing Templates

* Templates are a way of creating a datastructure once
so that 1t can assigned any arbitrary datatype after

* Similar to generic types in Java (but NOT the same)

* E.g. We create a template queue once

* Now we can easily use a string version and an integer

<r

version without having to recode it.

Introducing The STL

* Turns out you won't actually have to code any
template classes yourself anyway

* It's all been done for you
* The Standard Template Library:

* A library of standard templates
° vectors, queues, priority_queues, sets, maps ... etc etc etc

* Very powertful

* Very fast
+ Very flexible *

Templates in C++: Syntax

* STL has the vector<T> templated class

* If we want a vector of ints we simply use:
° vector<int> my_integers;

° Or for doubles
* vector<double> my_doubles;

* Or for any class you want

* class my_node_class {int n; double weight; ...};

* vector<my_node_class> my_nodes; *

* Fast — optimised to hell and back!

* All templates are made at compile time

* It's as if someone quickly codes up the specific data-structure for you
just before compiling

* Unlike Java (which does it at run-time ... very very slow)

* Powerful and Vast

* Easy to make any datastructure of any type
* Can also make arrays of templated types
* vector<int> [N]; (you can't do this in Java!)

* There are more then enough datastructures to suit any situatign

* And it's all done for you!!!!

Common Data-Structures

* Vector

° List

° Queue

* Stack

* Map

* Priority Queue
* Set

* Hashes

Sequences

* List - #include <list>

* Your standard 1ssue linked list (doubly linked)

* list<double> my_list;

* my_list.push_back(42); // adds to back of array

* my_list.push_front(21); // adds to front of array

* double d = my_list.back(); // gets item at back of list

* double d2 = my_list.front(); // gets item at front of list

* my_list.pop_back(); // removes back item from list

* my_list.pop_{front(); // removes front item from list
* Can also 1nsert in the middle (explained a bit later)*

Sequences

* Vector - #include <vector>

° Resizeable array

* vector<int> my_vec; // array size 0

* vector<int> my_vec(100); // array size 100
* Has same operations as list
* push_back(), push_front(), front(), back() ...
* Can use standard [] notation (operator overloading!)

* my_vec[3] =11,

° int my_int = my_vec|[9]; *

Queues and Stacks

* Queue - #include <queue>

* queue<double> Q; // empty queue
° Q.push_back(3.14);

* Q.push_back(2.7)

* double d = Q.top(); // will be 3.14

* Q.pop(); // removes the top element from the queue

* Stack - #include <stack>

* Works in the same way as queue, except FIFO '

Sorted data-structures

* These datastructures require some form or order

* Either have to give it a less-then function or define the
less-then operator (<)

* operator< already defined for int, double, float etc

* Can define it for whatever class you want

class my_class {

int a, b; double c;

bool operator<(const my_class& m) const {

return c < m.c;} };
* Can also define the == operator similarly *

* Map - #include <map>

* Maps one type to another - map<key, data>

° map<int, string> my_map;

* my_map[1] = ’One”;

* String s = my_map|[1]; // will be ”One”

* String s2 = my_map|[3]; // will be default value of ””
* Can map anything to anything

° map<string, int> string_map;

° string_map|[”January”] = 31; '

Priority Queue

* Priority Queue - #include <queue>

° Must have operator< defined
° priority_queue<int> P;

* Same commands as a normal queue
* P.push(), P.top(), P.pop()

* Except top will return the 'largest’ value
* Depending on how you define large

* If you want the smallest value

* Define large to be small ;)

°* returnreturnc > m.ocC:

General functions

* By now you would have seen that some functions
are common to nearly all structures

* .s1ze() returns the number of elements

* .empty() returns whether there are elements at all

* Rather use .empty() instead of .size() ==

* Since .size() might not be O(1) - can anyone say list?
* You've already seen front(), back() push_back() etc...

° These are common to most structures (not all)

* Check the docs i1f you are unsure . -

° Having a structure 1s great

° But what if you want to go through all the elements
of a structure?

* Use 1terators!

* Almost all STL data-structures have iterators

* Like priority_queues don't have iterators

<r

Iterators: Example

vector<my_class> my_vec;

. // adding stuff to my vec
for (vector<my class>::iterator i = my vec.begin() ; i != my vec.end() ; i++)
{

// note! It is *i, not i (the astrik dereferences the iterator)
cout << *i << endl;

cout << (*i).a << endl;

cout << i->a << endl; // -> just a shorthand way of writing (*1i).

}

* Can do this with list, set, queue, stack...

* Check documentation for more info

Whats going on here!?

* vector<my_class>::iterator 1 = my_vec.begin()
* Like int1=0;
° 1++

° This 1s like 1.1terate() or 1.next(). Just move on to the next
element

° 1 !=my_vec.end()

* my_vec.end() points to the position just after the last

element 1n the datastructure I

Iterators: my vec.end();

* Why do we say != instead of < ?7?
* There 1s no sense of less then 1n an iterator.
* Say we are at the last element of the list:

° 1++ will then make 1 point to the position just after the
list

* the position just after the list == my_vec.end()

* Also useful as a 'NULL' value (c.f. algorithms...)

<r

Other Iterator stuff

° Some iterators are bidirectional (i.e. can use 1--)

* Reverse 1terators

* Backward traversal of a list

* For(list<int>::reverse_iterator 1 = my_list.r_begin() ;
1 !=my_list.r_end(); 1—)

°* For vectors:

* [] operator 1s slightly slower then useing iterators

<r

Now that you know

iterators...

* list<int>::iterater i; // and 1 1S 1n the middle of the list
° my_list.ansert(1, 45); // inserts 45 just before 1
* Same for vectors

* my_list.erase(1); // erases element at 1

° But what if you have this

for (list<int>::iterator 1 = my list.begin(); 1 !=
my list.end() ; i++) {

if (*1 == 45)

my list.erase(1i);
} *

Erasing elements

for (list<int>::iterator 1 = my list.begin(); 1 !=
my list.end() ; i++) {

if (*1 == 45)
my list.erase(1);

* The item at 1 will be erased
° When the next loop comes around, 1++ will be called

° But we just deleted i !

for (list<int>::iterator 1 = my list.begin(); i !=
my list.end() ; i++) {

if (*1i == 45)
my list.erase(i--); // problem solved

* Set - #include<set>

* Unique Sorted set of elements
* So no two elements will be the same
* Must have operator< defined
* Since iterator will run through them in order

* set<double> my_set;
* my_set.insert(3.1459);

* my_set.remove(11.5);

Set iterators

* upper and lower bounds of a set

° set<point>:terator = my_set.lower_bound(10);
* Returns the first element that 1s >= 10

° set<point>:terator = my_set.upper_bound(90);
* Returns the first element that 1s <= 90

°* Soaset{l,4, 15, 39, 89, 90, 102, 148}
* my_set.lower_bound(10); //will point to 4
* my_set.upper_bound(90); //will point to 90

Hash Set - #include <ext/hash_set>
using namespace __gnu_cCXxXx;
hash_set<const char *> my_hash_set;
my_hash_set.insert(’a string”);

my_hash_set.insert(”another string”);

my_hash_set.find(’a string”’); // returns an iterator

* Returns my_hash_set.end() if not found

<r

* Hash Map - #include <ext/hash_map>
° using namespace __ gnu_Cxx;
* Like a map

° hash_map<int, const char *> my_hash_map;

° my_hash_map[3] = "a string”’;

<r

The Hashing Function

* As you know the hash set and hash map need a
hashing function

* This 1s already defined for int, double, float, char
byte, short, long and const char *

* If you use your own class then you have to provide
your own hashing function

* Use function objects (explained later)

° hash_set<my_class, my_hash_func> my_hash_set; l

* We have this lovely general way of using data-
structures:

* Why don't we use them to write general algorithms?
°* We do! (by "we” I mean the people who wrote STL)

* sort(), find(), unique(), count(), reverse() are all
general algorithms at your disposal

* There are others...

* #include <algorithm> .

Algorithms: Types

* Algorithms can loosely be group 1nto 2 categories

° Data Transformation: These algorithms transform your
data by applying operations on them. Can overwrite the
original or copy to a new container. eg: reversing,
sorting, etc

* Data Information: These algorithms retrieve information
about your data. eg: minimum element, searching, etc

<r

Algorithms: Before we begin

* A lot of algorithms use function objects.

* Function objects are just objects of classes that have
the () operator overloaded.

* Function objects must have the correct parameters
for your program to compile.

* Can often be interchangable with functions
themselves.

<r

Algorithms: Before we begin

* This 1s legal
° vector<double> my_vec;
* sort(my_vec.begin(), my_vec.end());

* And so 1s this

* double my_arr[N];

* sort(my_arr, my_arr+N);

Algorithms:

Transformations

* copy(myArr, myArr+N, myVec.begin());
* copy_n(myArr, N, myVec.begin());
* copy_backward(myArr, myArr+N, myVec.end());

* Copies data from one place in memory to another.

* Can specity iterators for the range to copy or specity a
iterator to the beginning of a range.

* Usually copies from start to end, but can do the other

<r

way.

Algorithms:

Transformations

* swap(a, b);
* Swaps two values.
* iter_swap(myArr+3, myArr+4);
* Swaps two values of iterators.
* swap_ranges(myArr+1, myArr+N/2, myArr+1+N/2);

* Swaps two ranges specified by the beginning and end of

<r

the first range and the beginning of the second.

Algorithms:

Transformations

* transform(myArr, myArr+N, myVec.begin(), fabs)

* Transforms all the elements 1n the range specified by the
first two 1terators and stores the result in the third
iterator. The last parameter 1s a unary function object or
function giving the result of the transformation.

* transform(myArr, myArr+N, myVec.begin(),
my Vec.begin(), pow)

* Same as above, except with a binary function. Need to
specily an extra iterator to the beginning of a second

range. *

Algorithms:

Transformations
* fillmyArr, myArr+N. setValue);

* Sets all values 1n the range of the first two 1terators to the
set value.

* fill_n(myArr, N, setValue);

* Same as above, but can specifty exactly how many
elements to fill.

* generate(myArr, myArr+N, functionObject);

* generate_n(myAurr, N, functionObject);

* Same as the above, but can specify a function object t
takes no arguments to get a value to fill each element:

Algorithms:

Transformations

° unique(myArr, myArr+N);

* Removes consecutive duplicate items specified by the
range.

* unique(myArr, myArr+N, binaryPredicate);

* Removes consecutive duplicate items specified by the
range, and using the binary predicate to test for equality.

* Does NOT remove all duplicates in a range, however, if
the range 1s sorted, all duplicates 1n that range will be

removed.
* Also copy versions.

Algorithms:

Transformations

* reverse(myArr, myArr+N);
* Reverses the range specified by the iterator.

* Also a copy version to store the reversed range in a new
container.

<r

Algorithms:

Transformations

* sort(myArr, myArr+N);
* Sorts the range specified.
* Uses the < operator to compare elements.
* Guaranteed O(Nlog(N)). Uses a introsort.
* stable_sort(myArr, myArr+N);
* Same as above, but 1s stable.

* Separate sort functions for linked lists.

Algorithms:

Transformations

* A few others functions for transforming data.

* Statistical functions for finding random samples and
shuffling the data.

° Mathematical functions for finding unions, intersections,
etc of sets.

* Functions for finding permutations of your set.

° Functions for find the n-th 'smallest' element in your set.

<r

Algorithms: Information

* find(myArr, myArr+N, findValue);

° Performs a linear search on the range. Returns the first

iterator such that the value at that iterator 1s equal to
findValue.

* find_if(myArr, myArr+N, predicate);

* Same as above, but instead of testing for equality with a
specific element, it tests for truth of a predicate.

* Also find_first_of which searches for the first of a list of

values 1n the range. l

Algorithms: Information

* lower_bound(myArr, myArr+N, findValue);

* Performs a binary search to return an iterator to the first
appearance of findValue 1n the range.

* upper_bound(myArr, myArr+N, findValue);

* Same as above, but returns an iterator to 'one past' the
last element equal to findValue.

* equal_range(myArr, myArr+N, findValue);

* Same as above, but returns a pair of iterators representing

the range on which all values equal findValue. . -

Algorithms: Information

°* binary_search(myArr, myArr+N, findValue)

* Returns true if the findValue is in the range specified by
the iterators and false otherwise.

* All four of the binary search functions can also take
comparators.

* Reminder: Comparators are binary predicates, ie: function
objects which take two objects and return a boolean value.

<r

Algorithms: Information

* Several other functions that can be used to get information.

* Mathematical functions that allow you to calculate the
minimum and maximum of sets, sum of elements, etc.

<r

Other templated types

* pair<T, Y>
* basically two objects lumped together

° e.g. pair<int, double> could represent an index and an
assoclated weight

* can have a pair<double, pair<int,int> >
° represents a weight and two nodes (perhaps...)
* pair<double, pair<int,int>>; WRONG!!!!

* c++ gets confused with the >> operator (just use a space)

* Comparisons compare first, then second. *

Accessing pairs

° to access elements 1n the pair:

° pair <string, int> my_pair;
° my_pair.first = "a string’’;
* my_pair.second = 5;

* my_pair = make_pair(’another string”, 42);
* Can have arrays of pairs

° pair <int, int> edges [N];
* edges[5].first = 64;

Complex numbers

* complex - #include<complex>

* Can be treated like a pair of numbers (X,y),
* but with certain mathematical functions that are quite useful
* complex<double> coord; // vector

* Typically complex<T> can be treated as a handy built-in 2D
vector class.

* A=a+bi, conj(A)=a—bi
° real(A) =a,1mag(A)=>b

» conj(A)xB = A.B + (AxB);i *

String and Rope

* STL provides two data structures for character
strings.

° string
* Your normal familiar string.

* Provides functions like substring, length, etc.

* Provides functions for getting the underlying string data.
° rope
* Not your normal familiar string.

* Better than strings in certain circumstances, however more

complicated and unnecessary. Different semantics to stra

° unsorted array

nsert at front O(N)
nsert in middle O(N)
nsert at end O(1)
Remove at front O(1)
Remove in middle O(N)
Remove atend O(1)
~ind element O(N)
~ind minimum O(N)
Goto N'th item O(1)

<r

* sorted array

nsert at front O(N)
nsert in middle O(N)
nsert at end oIL\Y)
Remove at front O(1)
Remove in middle O(N)
Remove atend O(1)
~ind element O(log(N))
~ind minimum O(1)
Goto N'thitem O(1)

*]ist

nsert at front O(1
nsert in middle O(1
nsert at end O(1

Remove at front O(”
Remove in middle O(”
Remove atend O(”
~ind element O(N)
~ind minimum O(N)
Goto N'th item oIL\)

<r

®* vector

nsert at front O(N)
nsert in middle O(N)
nsert at end O(1)
Remove at front O(1)
Remove in middle O(N)
Remove atend O(1)
~ind element O(N)
~ind minimum O(N)
Goto N'th item O(1)

<r

° queue

Insert O(1)
Remove O(1)

* stack

Insert O(1)
Remove O(1)

° priority_queue

nsert O(1)
Remove O(log(N))
~ind minimum O(1)

* set

nsert O(log(N))
Remove O(log(N))
~ind element O(log(N))

~ind minimum O(1)

* map

nsert O(log(N))
Remove O(log(N))
-ind element O(log(N))

°* hash set

nsert O(1)
Remove O(1)
~ind element O(1)
~ind minimum oIL\Y)

° hash_map

nsert O(1)
Remove O(1)
-ind element O(1)

How to use the STL docs

* The STL documentation 1s all encompassing
* will tell you everything you need to know

° but!
* Horrible to read

* So we're going to show you how...

* goto stl_docs;

