


How can | rmine the exact
value of something like 200!

Which Structure to use

An array of integers.

See this as the number’s base n representation.
If we store x as a[0] to a[k] to base n then:

x = a[0] + a[1].n + a[2].n? + a[3].n3 + ... + a[k].nk.

Then all we still need 1s a variable for the sign.



Bignumbe rray [-2..max] of integer

e -2 is to store the max exponent in a bignumber.
e -1 is to store the sign of the b
e 0..max store the coefficients of ba

e How do | decide what base to use:
— Normally we choose the base as a power 0
— This makes writing it down in the end easier
— Choose the base so as to prevent overflow
— Suppose you choose base n —hence 0 .. n-1 ha

— If you are only adding make sure 2*(n-1) will fit int
int type.

— If you are multiplying as well make sure that (n-1y




Oper

e Comparison
e Addition

e Subtraction
e Multiplication
e Division



omparison

e |like to use -1 for negative, 0 Toxr 0 and 1 for positive.
If signA > signB then return A > B else
if signB > signA then return A else (if signA=signB)
if signA = 0 then return A = B (be e both are 0)
else

ctr = max (sizeA,sizeB)
while (A[ctr] = B[ctr]) and (ctr > 0) do
ctr=ctr-1
if A[ctr] > B[ctr] then (implying Abs(A) > Abs(
if signA =1 thenreturn A> B

else return A< B
else

If A[ctr] < B[ctr] then

if signA = 1 then return A<B
else return A> B

else (if Abs(A) = Abs(B)) then return A =B



e Firstly write a absolute _sum pro
e Secondly write a absolute differen
e Use absolute sum for equal sign

e Use absolute_difference for opposite sig

ure

e Note : if it is known that the numbers are all
positive you can leave out the
absolute_difference procedure.



carry =0
for pos = 0 to max (sizeA,sizeB) do
C(pos) = A(pos) + B(pos) + carry
carry = C(pos) div base
C(pos) = C(pos) mod base
If carry <> 0 then
sizeC = max(sizeA,sizeB) + 1
C(sizeC) = carry
else
sizeC = max(sizeA,sizeB)



Abso difference

borrow =0
for pos = 0 to max (sizeA,sizeB) do
C(pos) = A(pos) - B(pos) - borrow
If C(pos) <O
C(pos) = C(pos) + base
borrow = 1
else
borrow =0
While (C(pos) = 0) and (pos > 0 ) do
pos = pos - 1
sizeC = pos (ihis works for pos=0 as well)

Make sure that A > B for this or take care of
it in procedure




A+B=C
If A and B have the same sign dopsolute addition
and signC = signA
If they have different sign do Absolute di
(remember large minus small abs value) a
sign

To find out which one has larger absolute valu
might consider writing an absolute comparison.

Subtract

Negate the sign of B and Add A and (-B)



Mulfti tion by scalar

If s <0 then
signB = -signA
S =-S5 (so that we multip

else
signB = signA

carry =0

for pos = 0 to sizeA do
B[pos] = A[pos]*s + carry
carry = B[pos] div base
B[pos] = B[pos] mod base

pos = sizeA

While (carry <> 0) do (taking care of the overflow proble
pos = pos + 1
B[pos] = carry mod base
carry = carry div base

sizeB = pos

ith a positive)




Multiplica by bignumber

The idea behind this is to first write a proce to take care of the

offset. (call it multiply_and_add)

Difference from scalar multiplication:

1. Replace B[pos] with C[pos+offset] througho

because in the main procedure we are multiplying A with

C)

2. Do not assign A[pos]*s + carry directly to C[pos+o

add it to the existing value.

The main procedure will then look something like this:

for pos = 0 to sizeB do
multiply_and_add(A,B(pos)(the scalar),pos(the offset),C)

sinC = signA * signB



Like with the other cases we will first write a divi

rem=0

sizeC =0

for pos = sizeA to 0 do

rem = (rem*base) = A[pos]

C[pos] = rem div s

if (C[pos] > 0) and (pos > sizeC) then
rem = rem mod s (this will in the end give the remainder



Divisl
Division by multiple subtraction:
Note that this is much too slow for mos large cases
This time declare rem as a bignumber as we
rem=0
For pos = sizeA to 0 do
rem = rem*base(scalar) + A[pos] (use procedur
C[pos] =0
While (rem > B) do (use compare procedure)
C[pos] = C[pos] + 1
rem=rem-B (use subtract or add procedure)
if (C[pos] > 0) and (pos > sizeC) then
sizeC = pos

bignumber




Divisio using binary search

Once again let rem also be akignumber
rem=0
For = sizeA to 0 do
rem = rem*base + A[pos] (use proce
lower = 0
upper = base - 1
while upper > lower do
mid = (upper + lower) div2 + 1
D = B * mid (a scalar)
E=D-rem

S as above)

if signE >=0
lower = mid
else

upper = mid - 1
C[pos] = lower
rem = rem - B*lower and then control C’s size like before



