

Numerical Algorithms

Simple Algorithms to speed up basic functions,
using these techniques can optimize the basic

functions so that you can focus on the main
algorithm.

Things to be covered

 Euclid's Algorithm
 Least common multiple
 Prime testing by trial division
 Sieve of Eratosthenes
 Horner's rule
 Factoring
 Efficient exponentation

Euclid's Algorithm (GCD)

 The algorithm is used to obtain the GCD of any
two given numbers

 By continuoesly calculating the remainder of the
two numbers, the GCD is determined as soon
as the remainder eqauls 0

Euclid's Pseudo code

GCD(int a,int b)
if b == 0

return a
else

return GCD(b,a%b)

Least common multiple

 As soon as you understand GCD it can be
applied to finding the least common multiple

 The method is derived from the High School
method of calculating the prime factors of both
numbers then multiplying the union of each
number

Least common multiple
Take 24 and 36

24 = 2.2.2.3
36 = 2.2. .3.3

Union = 2.2.2.3.3

LCM = 72

Note that the it can be simplified to:
LCM = (24.36)/GCD(36,24)

thus LCM = (a*b)/GCD(a,b)

Prime testing by trail division

 Note that you would only use this method to
test whether a given number is prime

 To generate primes use Sieve of Eratosthenes
 Note: You only need to test upto √N
 This can be optimised by testing 2 apart then

use an interval of 2
 O(√N)

Sieve of Eratosthenes

 Generates a list of primes
 Calculates primes in a range from 2 to N
 Faster than repeated trail division
 Start by assuming all numbers except 1 are

prime

The Algorithm

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Iterate through the numbers in increasing order until you find a number that is marked as prime

The Algorithm

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
Confirm the number as prime then mark the multiples of 2 onwards from 2^2 as not prime

The Algorithm

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Now continue using the same pattern

The Algorithm

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

As soon as you finish with 7 there is no more need to eliminate as 11^2 > 100

The Algorithm

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Green primes

Pseudo Code

Sieve(int n)
bool pTest[n+1]
//Set values == True
for i = 2 to n

if pTest[i]
//Add to list
for j = i*i to n step i

pTest[j] = False
return list

Horner's rule

 An efficient way to calculate polynomials
 Take
 This can become
 By using the notation above this can be

reduced to 8 operations compared to 14 in the
first

 Thus you can use Horner's rule for a
polynomials to the Nth degree in the form of:

f  X =X  X X 5X12−2−24

f  X =5X 412X3−2X 2−2X4

f  X =A0 X
NA1 X

N−1−A3 X
N−2 ...AN −1 XAN

Pseudo Code

Horner(double [] A,double X,int N)
float Ans = A[0]
for i = 1 to N

Ans *= X
Ans += A[i]

return Ans

Integer Factoring

 When you need to reduce numbers to their
prime factors

 DON'T generate a list of primes
 Starting with 2 and moving upwards will ensure

all numbers are prime

Pseudo Code

PrimeFactors(int N)
Ans = N
array Factors
for i = 2 to N

while (Ans % i == 0)
Factors.append(i)
Ans /= i

if (Ans == 1) break
return Factors

Efficient Exponentation

 Calculate in O(log b) time
 There are two methods, both are based on the

binary representation of the exponent
 Left to Right (Recursive overhead)
 Right to Left (No recursive overhead)
 Both methods are O(log b)

ab

Left to Right

 Take the statement
 That can be represented as
 Initialize an answer variable to 1
 Then start from the left most value
 If the value is 1 multiply the answer variable

with a
 Move to the next position and square the

answer

a29

a111012

Left to Right Pseudo Code

LeftToRight(int a,int b)
if (b == 0) //exit statement

return 1;
else

if (b % 2 == 1)
return a*LeftToRight(a,b/2)**2

else
return LeftToRight(a,b/2)**2

Right to Left

 Similar to Left to Right, but doesn't need
recursion

 You keep an additional index of the value of the
exponent at the current position of the binary
representation

 If the value is 1 at that position, multiply the
answer with the index

Pseudo Code

RightToLeft(int a, int b)
int Index = a
int Answer = 1
while (b)

if (b % 2 == 1)
Answer *= Index

Index *= Index
b /= 2

return Answer

Questions

?

