
  

Numerical Algorithms

Simple Algorithms to speed up basic functions,
using these techniques can optimize the basic 

functions so that you can focus on the main 
algorithm.



  

Things to be covered

 Euclid's Algorithm
 Least common multiple
 Prime testing by trial division
 Sieve of Eratosthenes
 Horner's rule
 Factoring
 Efficient exponentation



  

Euclid's Algorithm  (GCD)

 The algorithm is used to obtain the GCD of any 
two given numbers

 By continuoesly calculating the remainder of the 
two numbers, the GCD is determined as soon 
as the remainder eqauls 0



  

Euclid's Pseudo code

GCD(int a,int b)
if b == 0

return a
else

return GCD(b,a%b)



  

Least common multiple

 As soon as you understand GCD it can be 
applied to finding the least common multiple

 The method is derived from the High School 
method of calculating the prime factors of both 
numbers then multiplying the union of each 
number



  

Least common multiple
Take 24 and 36

24 = 2.2.2.3
36 = 2.2.  .3.3

Union = 2.2.2.3.3

LCM = 72

Note that the it can be simplified to: 
LCM = (24.36)/GCD(36,24)

thus LCM = (a*b)/GCD(a,b)



  

Prime testing by trail division

 Note that you would only use this method to 
test whether a given number is prime

 To generate primes use Sieve of Eratosthenes
 Note: You only need to test upto √N
 This can be optimised by testing 2 apart then 

use an interval of 2
 O(√N)



  

Sieve of Eratosthenes

 Generates a list of primes
 Calculates primes in a range from 2 to N
 Faster than repeated trail division
 Start by assuming all numbers except 1 are 

prime



  

The Algorithm

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Iterate through the numbers in increasing order until you find a number that is marked as prime



  

The Algorithm

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
Confirm the number as prime then mark the multiples of 2 onwards from 2^2 as not prime



  

The Algorithm

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Now continue using the same pattern



  

The Algorithm

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

As soon as you finish with 7 there is no more need to eliminate as 11^2 > 100



  

The Algorithm

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Green primes



  

Pseudo Code

Sieve(int n)
bool pTest[n+1]
//Set values == True
for i = 2 to n

if pTest[i]
//Add to list
for j = i*i to n step i

pTest[j] = False
return list



  

Horner's rule

 An efficient way to calculate polynomials
 Take  
 This can become
 By using the notation above this can be 

reduced to 8 operations compared to 14 in the 
first

 Thus you can use Horner's rule for a 
polynomials to the Nth degree in the form of:

f  X =X  X X 5X12−2−24

f  X =5X 412X3−2X 2−2X4

f  X =A0 X
NA1 X

N−1−A3 X
N−2 ...AN −1 XAN



  

Pseudo Code

Horner(double [ ] A,double X,int N)
float Ans = A[0]
for i = 1 to N

Ans *= X
Ans += A[i]

return Ans



  

Integer Factoring

 When you need to reduce numbers to their 
prime factors

 DON'T generate a list of primes
 Starting with 2 and moving upwards will ensure 

all numbers are prime



  

Pseudo Code

PrimeFactors(int N)
Ans = N
array Factors
for i = 2 to N

while (Ans % i == 0)
Factors.append(i)
Ans /= i

if (Ans == 1) break
return Factors



  

Efficient Exponentation

 Calculate          in O(log b) time
 There are two methods, both are based on the 

binary representation of the exponent
 Left to Right (Recursive overhead)
 Right to Left (No recursive overhead)
 Both methods are O(log b)

ab



  

Left to Right

 Take the statement
 That can be represented as 
 Initialize an answer variable to 1
 Then start from the left most value
 If the value is 1 multiply the answer variable 

with a
 Move to the next position and square the 

answer

a29

a111012



  

Left to Right Pseudo Code

LeftToRight(int a,int b)
if (b == 0)  //exit statement

return 1;
else

if (b % 2 == 1)
return a*LeftToRight(a,b/2)**2

else
return LeftToRight(a,b/2)**2



  

Right to Left

 Similar to Left to Right, but doesn't need 
recursion

 You keep an additional index of the value of the 
exponent at the current position of the binary 
representation

 If the value is 1 at that position, multiply the 
answer with the index



  

Pseudo Code

RightToLeft(int a, int b)
int Index = a
int Answer = 1
while (b)

if (b % 2 == 1)
Answer *= Index

Index *= Index
b /= 2

return Answer



  

Questions

?


