Combinatorics

Permutations (n pick k)
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Combinations (n choose k)
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With repetitions
also number of ways to divide k identical objects into n sets
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Multinomial Coefficients
Place n objects in m boxes of size k;
Permutations of multiset with m distinct elements occurring k; times
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Stirling Numbers of the second kind

The number of ways to partition a set of n elements into k non-empty subsets
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Inclusion-exclusion principal

U
i=1

n

=D 1A= > lAinA4]

i=1 i 1<i<i<n

| Y JANANA] - - (1) AN N A

ik 1<i<jk<n

Burnside's Lemma
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|X /G| is the number of solutions taking symetry into account
G is the set fo transforms

|X # ‘ is the number of solutions left unchanged by transform g

Calculating combinations

function combination( n, k )
c =1
for 1 = 0 to k-1
c=c * (n-1i)/(i+1)

return c



