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Big Numbers in Programming Languages

Java: BigInteger

Python: Built-in

C/C++: None

Pascal: None
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C++ has no standard Big Number Library,

However, C++ is the preferred language for the 
IOI.

Therefore, you must learn how to write your own 
Big Number library.
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Question: When is it necessary to use Big 
Numbers?

Answer: When the standard integer datatypes 
won't cut it.
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Ranges of built-in datatypes

char: [-128, 127]
unsigned char: [0, 255]
short: [-32768, 32767]

unsigned short: [0, 65535]
int: [-2147483648, 2147483647]
unsigned int: [0, 4294967296]

long long: [-9223372036854775808, 
9223372036854775807]

unsigned long long: [0, 18446744073709551616]
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The fastest datatypes 
are the ints.

 

The other built-in 
datatypes are next.

Big Numbers are by far 
the slowest.
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How do you code a Big Number library?
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Represent the number as a list of digits.

Take advantage of the fact that ints can store  
largish numbers, use a bigger base than 10.

But use a ^10 base, for easier printing

Sign bit only if necessary!

1 5 4 2 6 2 625252368579314684342326184346426873456748
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You will need to code the various operators 
yourself!

However, don't code all the operators! Only the 
subset that you need.
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If you don't know big your numbers will get. Then 
use a vector.

If you are using a vector then it would probably be 
better to implement the 'int get(int digit)' and 'void 

set(int digit, int value)' functions.

They will allow you to handle cases where you 
need to grow your vector or need to access a digit 

past the end of the vector.
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Constructing a Big Number from a built-in 
datatype

Involves getting the digits of the number in the 
base your Big Number is in

Handle the zero case and negative cases!
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Another useful function: reduce()

When we perform most operations with Big 
Numbers we get carry digits which we must 

handle.

Instead of handling the carry digits separately, we 
write one function to handle it in all cases. This 

will also handle growing of the list.
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Addition of two (positive) Big Numbers

Same as how you did it in primary school.

Add the corresponding digits to get the next digit.

Remember don't worry about the carry.
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Comparing Big Numbers

When is A > B ?

If A < 0 and B > 0 then it is false
Else If A < 0 and B < 0 then it is -B < -A

Else If size A != size B then it is size A > size B
Otherwise compare the number lexicographically

(STL :) )
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Subtraction of two (positive) Big Numbers

Only handle subtraction with a positive result.
In A – B

If A > B then A – B > 0
If A < B then A – B < 0 so A – B = -(B – A)

Use borrow digits instead of carry digits, so no 
need to reduce.

Must handle leading zeroes in the answer!
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Multiplication of two Big Numbers

Sign bit can be handled separately

Slower than addition, however there are faster 
algorithms than the one presented.

Must be careful about the choice of base.

Remember to reduce()!
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Division of a Big Number and an int

Sign can be handled separately

Recall the long division algorithm?

Again, be careful about the choice of base.
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Tricks

Choice of base

get and set methods

Reduce method

Operator overloading and proper constructors
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Conclusion

Increasing occurrence in competitions like COCI.

Easy points, just understand how numbers work!

Related topic: Big Decimals, harder but probably 
not in the IOI.
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