
South African Computer Olympiad
Final Round

Day 2: Future Stars

Overview

Author Keegan
Carruthers-

Smith

Graham
Poulter

Max Rabkin

Problem lights seen ptotoot

Source lights.java
lights.py
lights.c

lights.cpp
lights.pas

seen.java
seen.py
seen.c

seen.cpp
seen.pas

ptotoot.java
ptotoot.py
ptotoot.c

ptotoot.cpp
ptotoot.pas

Input file lights.in seen.in ptotoot.in

Output file lights.out seen.out ptotoot.out

Time limit 1 second 2 seconds 2 seconds

Number of tests 10 10 10

Points per test 10 10 10

Total points 100 100 100

The maximum total score is 300 points.

South African Computer Olympiad
Final Round

Day 2: Future Stars

Lights

Author

Keegan Carruthers-Smith

Introduction

Being a Monty Python fan means one thing, you love traf-
fic lights, but only when they are green. Unfortunately
you are a Monty Python fan in Africa, where the traffic
lights don’t work as they are supposed too.

Task

The traffic lights are in a row. Each light has its own
individual toggle. When a light’s switch is toggled, that
light and every light to the right of it gets toggled. You
are given the initial states of the lights (either green or
red; there is no amber). Your task is to make all of the
traffic lights green with the minimum number of toggles.

Example

Suppose that the traffic lights are like this:

Red Red Green Green Red Green

The minimum number of toggles required to make all of
the lights green is 4. (Toggle lights 1, 3, 5 and 6 where 1
is the left-most light).

Input (lights.in)

The first line contains the number of traffic lights, N . The
next N lines each contain an integer, which is either 0 or
1, with 0 indicating a green light and 1 a red light. The
lights are listed from left to right.

Sample input

6
1
1
0
0
1
0

Output (lights.out)

The output file contains N lines, with line each indicating
how many times the corresponding light was toggled. The
order of the lights is the same as in the input file. You
must output the unique solution for which the number of
toggles is minimised.

Sample output

1
0
1
0
1
1

Constraints

• 1 ≤ N ≤ 100000

In 50% of the test cases, 1 ≤ N ≤ 1000.

Time limit

1 second. Python: 10 seconds.

South African Computer Olympiad
Final Round

Day 2: Future Stars

How Not To Be
Seen

Author

Graham Poulter

Introduction

The How Not To Be Seen competition is going well, with
several contestants not yet eliminated. They are presently
hiding in the Queen’s Garden, which has an unusual lay-
out. The Queen’s Garden is made up of C columns, each
of which may be planted with trees, and R rows, each of
which may be planted with shrubbery. We mark each row
or column with a “1” if it planted, and mark it with a “0”
otherwise. A square with neither tree nor shrubbery is too
open to hide in, and a square with both is too crowded for
hiding. A square with one or the other is a prime hiding
spot. However, for the contest you can only rent a rect-
angle H rows high by W columns wide, which should be
placed in an area with the greatest number of crowded or
open spots (and hence the fewest hiding spots).

Task

Given the markings along the rows and columns, and two
numbers H and W , find a rectangle that is H rows high
and W columns wide which contains the most crowded
or open squares possible, and output the number of such
squares in that rectangle.

Example

Suppose the garden has R = 4 rows and C = 5 columns.
The markings down the rows are 0011 and the markings
across the columns are 10110. You are required to find the
rectangle with height H = 2 and width W = 3 that con-
tains the most crowded and open squares, and determine
the number of such squares it contains.

If we represent the crowded or open squares with “1”
and the hiding-spot squares “0”, then the grid for this
example looks as follows:

0 1 0 0 1
0 1 0 0 1
1 0 1 1 0
1 0 1 1 0

The most crowded/open squares that an H = 2 and
W = 3 rectangle can contain in this example is 4, and an
example of one such rectangle is shown in bold text.

Input (seen.in)

The first line of the input contains two space-separated
integers, R and C, representing the number of rows and
columns into which the garden is divided. The second line
of the input contains two space-separated integers, H and
W , representing the height and width of the search rectan-
gle. The third and fourth lines respectively contain R and
C characters, each of which is a “1” or “0”, representing
the planting state of that row/column

Sample input

4 5
2 3
0011
10110

Output (seen.out)

The first line of the output contains one integer, the great-
est number of crowded or open squares that can be found
in a rectangle H rows high by W columns wide.

Sample output

4

Constraints

• 1 ≤ H ≤ R ≤ 100000

• 1 ≤ W ≤ C ≤ 100000

In 50% of the test cases, 1 ≤ R,C ≤ 1000.

Time limit

2 seconds. Python: 20 seconds.

South African Computer Olympiad
Final Round

Day 2: Future Stars

Putting Things On
Top Of Other

Things

Author

Max Rabkin

Introduction

The Society For Putting Things On Top Of Other Things
is having its annual faire, sponsored by International Pa-
per. The main event, the stackathon, involves (what else?)
putting things on top of other things; in this case, those
things are squares of paper.

The Society has hired a square field, which they have
divided into a grid. Some of the grid squares will play
host to tents and marquees for the faire’s other events,
but the remainder will be used for the stackathon, where
members of the Society will place as many large squares
of paper on the field as they can, subject to these rules:

• No piece of paper can cover a square with a marquee.

• The edges of the paper must lie along the grid lines.

• No two pieces of the same size can be in the same
position, but otherwise pieces can overlap.

Task

The sponsors need to know the maximum number of
pieces of paper they need to provide.

Example

Consider the following field where “M” represents a mar-
quee and “.” represents an empty square.

1 2 3 4
1
2 . M . .
3 M . . .
4

Fourteen 1 × 1 and four 2 × 2 squares of paper can be
placed on the field.

Input (ptotoot.in)

The first line consists of two space-separated integers W
(the width and length of the field) and N , the number of
marquees.

The next N lines consist of two space-separated inte-
gers, xi and yi, the coordinates of the ith marquee. Co-
ordinates run from 1 to W along both axes.

Sample input

4 2
2 2
1 3

Output (ptotoot.out)

The output consists of a single line containing an integer
P , the number of squares of paper that can be placed on
the field.

Sample output

18

Constraints

• 1 ≤ W ≤ 1000

• 1 ≤ N ≤ 10000

• 1 ≤ xi, yi ≤ W

In 50% of the test cases:

• 1 ≤ W ≤ 50

• 1 ≤ N ≤ 300

Time limit

2 seconds. Python: 20 seconds.

